CONCEPTUAL DESIGN AND MODELING OF
A FUEL CELL SCOOTER FOR URBAN ASIA

by

Bruce Lin

Princeton University
School of Engineering and Applied Sciences
Department of Mechanical and Aerospace Engineering

Submitted in partial fulfillment of the requirements for the degree
of Master of Science in Engineering from Princeton University, 1999

Prepared by:

(Author’s signature)

Approved by:

Professor Robert H. Socolow
Thesis Advisor

Professor Enoch Durbin
Thesis Reader

November, 1999
© Copyright by Bruce Lin, 1999. All rights reserved
abstract

Air pollution is of serious concern in many Asian countries, especially in densely-populated cities with many highly-polluting two-stroke engine vehicles. The present value of health effects have been estimated at hundreds of dollars or more, over each vehicle’s lifetime, for a reasonably wealthy country like Taiwan. Four-stroke engines and electric battery-powered scooters are often proposed as alternatives, but a fuel cell scooter would be superior to both by offering both zero tailpipe emissions and combustion-scooter class range (200 km).

Unlike 50 kW automobile-sized fuel cell stacks, the vehicular 5 kW fuel cell needed here has not received much attention. This niche is examined here with a conceptual design and consideration of the issues of water, heat, and gas management. The application is extremely sensitive to size, weight, and cost, so a proton exchange membrane fuel cell using hydrogen stored in a metal hydride is best. Hydrides also act as sinks for waste heat due to the endothermic hydrogen desorption process. Pressurized operation is found to be ineffective due to high parasitic power demands and low efficiencies at the low powers involved.

A computer simulation is developed to examine overall vehicle design. Vehicle characteristics (weight, drag, rolling resistance), fuel cell polarization curves, and a Taiwanese urban driving cycle are specified as inputs. Transient power requirements reach 5.9 kW due to the rapid accelerations, suggesting a large fuel cell. However, average power is only 600 W: a hybrid vehicle with a small fuel cell and peaking batteries could also handle the load. Results show that hybrid vehicles do not significantly improve mileage, but are certain to precede pure fuel cell scooters while fuel cells are still more expensive than peaking batteries.
System size is approximately the same as current electric scooters, at 43 L and 61 kg for the fuel cell, hydrogen storage, and electric motor / controller. Manufacturing costs of fuel cell scooters are expected to decrease to under $1,300 in the long term, with per-km fuel costs half of those for gasoline scooters. Hybrid zinc-air scooters offer similar performance at slightly lower vehicle price, but the fuel infrastructure costs may be prohibitive.
acknowledgments

With periods of hard acceleration, rapid decelerations, and occasional stalls in the course of writing this thesis, sometimes I felt that I was on the Taipei Motorcycle Driving Cycle myself. Thanks to everyone who had a part in this effort.

Thanks to my advisors Robert Socolow, Bob Williams, and Joan Ogden, and my thesis reader Enoch Durbin.

Thanks to the many people from various research groups, companies, and academic institutions who helped with guidance, hard data, and advice.

Thanks also to my family and friends and colleagues who supported me in the past twelve months, and for many, much longer than that.

Support for this research came from the Center for Energy and Environmental Studies, the Mechanical and Aerospace Engineering Department (including a Daniel and Florence Guggenheim Fellowship and a Sayre Prize), the United States Department of Energy, and the Energy Foundation.

This thesis carries 3055-T in the records of the Department of Mechanical and Aerospace Engineering.
Table of Contents

Abstract .. i
Table of contents .. iv
List of tables .. xi
List of figures ... xiv

1 Introduction ... 1

1.1 Transportation Background ... 6
 1.1.1 Why Taiwan? ... 6
 1.1.2 Taiwan vehicle fleet ... 8
 1.1.3 Taiwan Energy ... 11

1.2 Air pollution .. 12
 1.2.1 The internal combustion engine .. 12
 1.2.1.1 The four-stroke spark-ignition cycle 13
 1.2.1.2 The two-stroke spark-ignition cycle 17
 1.2.1.3 Advantages and disadvantages ... 20
 1.2.2 Pollutants ... 21
 1.2.3 Vehicle emissions standards and the reality 23
 1.2.4 Air pollution sources in Taiwan .. 27

1.2.5 Cleaner combustion technology .. 31
 1.2.5.1 Exhaust gas recirculation .. 31
 1.2.5.2 Superchargers .. 31
 1.2.5.3 Fuel injection ... 32
 1.2.5.4 Catalysis of exhaust gases .. 33
 1.2.5.5 Replacement by four-stroke engines 34
2.2.2.1 Existing scooter battery systems ... 65
2.2.2.2 Technology predictions ... 66
2.2.2.3 Lead-acid batteries ... 68
2.2.2.4 NiMH and NiCd batteries ... 69
2.2.2.5 Lithium variants ... 70
2.2.2.6 Zinc-air “regenerative” batteries ... 70
2.2.2.7 Summary ... 73

2.2.3 Peaking power and batteries for hybrids ... 74
 2.2.3.1 Peaking battery modeling ... 76
 2.2.3.2 Charge and discharge ... 78
 2.2.3.3 Hybrid battery conclusion .. 79

References for Chapter 2 ... 80

3 The hydrogen fuel cell power system ... 83
3.1 Fuel Cell Science ... 85
 3.1.1 Fundamentals ... 85
 3.1.1.1 Thermodynamics .. 86
 3.1.1.2 Kinetics ... 91
 3.1.1.3 A note on efficiency ... 94
 3.1.2 Types of fuel cells ... 95
 3.1.2.1 Phosphoric Acid Fuel Cell: well-developed, low density 96
 3.1.2.2 Proton Exchange Membrane Fuel Cell: for mobile applications, the best 97
 3.1.2.3 Alkaline Fuel Cell: poisoned by carbon dioxide 101
 3.1.2.4 Solid Oxide and Molten Carbonate Fuel Cells: higher temperature 102
3.1.2.5 Direct Methanol Fuel Cells: long-term promise 102
3.1.3 Stack characteristics ... 104
 3.1.3.1 Fuel cell stack specifications .. 105
 3.1.3.2 Published results for automobile fuel cell stacks 105
 3.1.3.3 Detailed construction ... 106
 3.1.3.4 Detailed construction results ... 110
3.1.4 Gas flow management ... 111
 3.1.4.1 Blowers ... 112
 3.1.4.2 Compressors .. 113
3.1.5 Water management ... 114
3.1.6 Heat ... 116
 3.1.6.1 Active cooling .. 118
 3.1.6.2 Passive cooling ... 118
 3.1.6.3 Boiling refrigerant .. 119
3.2 Fuel for the fuel cell .. 120
 3.2.1 Reformed fuels .. 120
 3.2.1.1 Hydrocarbon reforming .. 120
 3.2.1.2 Methanol reforming example .. 125
 3.2.1.3 Ammonia .. 126
 3.2.1.4 Chemical hydride energy storage .. 128
 3.2.2 Direct hydrogen storage .. 131
 3.2.2.1 Safety ... 131
 3.2.3 Metal hydride energy storage .. 133
 3.2.3.1 Thermodynamics ... 134
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.3.2</td>
<td>Kinetics</td>
<td>137</td>
</tr>
<tr>
<td>3.2.3.3</td>
<td>Classification</td>
<td>138</td>
</tr>
<tr>
<td>3.2.3.4</td>
<td>Metal hydride performance</td>
<td>139</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Compressed gas storage</td>
<td>142</td>
</tr>
<tr>
<td>3.2.4.1</td>
<td>Cylinder performance</td>
<td>143</td>
</tr>
<tr>
<td>3.2.4.2</td>
<td>Cylinder safety</td>
<td>145</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Liquid hydrogen storage</td>
<td>146</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Selection</td>
<td>147</td>
</tr>
</tbody>
</table>

References for Chapter 3 .. 149

4 Modeling and design .. 154

4.1 Performance requirements .. 156

4.2 Vehicle modeling .. 160

4.2.1 Physical model ... 160

4.2.2 Modeling parameter selection .. 164

4.2.3 Relative importance of various factors 165

4.2.4 Validation ... 168

4.3 Driving Cycle ... 170

4.3.1 TMDC ... 172

4.3.2 Modification of TMDC ... 176

4.3.3 Torque vs. rpm requirements .. 180

4.3.4 Modeling results .. 183

4.3.4.1 Battery powered scooter ... 184

4.4 Fuel Cell System Design and Integration 186
4.4.1 Design tradeoffs .. 186
 4.4.1.1 Maximum power and the polarization curve 187
 4.4.1.2 Power density ... 188
 4.4.1.3 Number of cells .. 189
 4.4.1.4 Flow rate parameters .. 190
4.4.2 Gas subsystem ... 191
4.4.3 Water subsystem ... 192
4.4.4 Cooling subsystem ... 192
 4.4.4.1 Cooling from storage system 194
 4.4.4.2 Active cooling .. 196
 4.4.4.3 Heat generation under the TMDC 198
 4.4.4.4 Selection ... 202
4.5.4 Overall parasitics ... 203
4.5 Integrated Model .. 206
 4.5.1 System performance ... 206
 4.5.2 Size and weight of power system 208
 4.5.3 Evaluation ... 211
4.6 Pressurized fuel cell option .. 213
4.7 Hybrid option designs .. 215
 4.7.1 Types of hybrids ... 216
 4.7.2 Fuel cell sizing .. 218
 4.7.3 Peaking battery and operation policy 221
 4.7.4 Simulation results .. 222
 4.7.5 Hybrid power system designs 228
5.4.5 Parting words ... 265

References for Chapter 5 .. 267

Appendices .. 268

A. Electric scooters .. 268

B. Detailed stack cost/size analysis ... 269

C. Radiator performance curves ... 284

D. Conversion factors .. 286

E. Acronyms and abbreviations ... 286

F. MATLAB simulation .. 288

G. A prototype scooter .. 300

list of tables

Chapter 1

1.1 Motorcycle populations in selected countries, 1993 6
1.2 VMT data for Taipei, 1987 11
1.3 A comparison of vehicle emissions standards 24
1.4 Data on motorcycle emissions: four-strokes and catalysts 26
1.5 Simulated emissions from more realistic driving cycle 26
1.6 PSI subindex pollutants in Taiwan 29
1.7 Cleanup technology, effects and prices 35
1.8 ITRI prediction of effects of scooter replacement on pollution 37
1.9 Estimate of externality damages from air pollutants 38
1.10 Electric Motorcycle Development Action Plan 43
Chapter 2

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Comparison of power systems</td>
<td>54</td>
</tr>
<tr>
<td>2.2</td>
<td>Motor specifications: UQM brushless and NGM hub motors</td>
<td>61</td>
</tr>
<tr>
<td>2.3</td>
<td>ZES-2000 electric scooter performance</td>
<td>66</td>
</tr>
<tr>
<td>2.4</td>
<td>Battery goals for various time frames</td>
<td>67</td>
</tr>
<tr>
<td>2.5</td>
<td>Peaking power battery characteristics</td>
<td>76</td>
</tr>
</tbody>
</table>

Chapter 3

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Stack size, weight, cost summary</td>
<td>110</td>
</tr>
<tr>
<td>3.2</td>
<td>Fuel gravimetric and volumetric energy densities, lower heating value basis</td>
<td>121</td>
</tr>
<tr>
<td>3.3</td>
<td>Steam reforming versus partial oxidation</td>
<td>122</td>
</tr>
<tr>
<td>3.4</td>
<td>Hydrogen output from reformed hydrocarbon fuels</td>
<td>124</td>
</tr>
<tr>
<td>3.5</td>
<td>Reformer performance</td>
<td>126</td>
</tr>
<tr>
<td>3.6</td>
<td>Chemical hydride comparison</td>
<td>129</td>
</tr>
<tr>
<td>3.7</td>
<td>Theoretical performance of various metal hydrides</td>
<td>138</td>
</tr>
<tr>
<td>3.8</td>
<td>Metal hydride systems comparison</td>
<td>141</td>
</tr>
<tr>
<td>3.9</td>
<td>Compressed gas options</td>
<td>145</td>
</tr>
<tr>
<td>3.10</td>
<td>Storage technology comparison</td>
<td>148</td>
</tr>
</tbody>
</table>

Chapter 4

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Performance of various vehicles of about 5 kW power</td>
<td>157</td>
</tr>
<tr>
<td>4.2</td>
<td>Fuel cell scooter performance requirements</td>
<td>159</td>
</tr>
<tr>
<td>4.3</td>
<td>Typical modeling parameters</td>
<td>164</td>
</tr>
<tr>
<td>4.4</td>
<td>Validation of physical model</td>
<td>168</td>
</tr>
<tr>
<td>4.5</td>
<td>Driving cycle comparison</td>
<td>174</td>
</tr>
<tr>
<td>4.6</td>
<td>Effects of “jitter”</td>
<td>175</td>
</tr>
</tbody>
</table>
4.7 Results of different algorithms applied to TMDC; comparison to FTP 178
4.8 Taiwan battery-powered scooter 185
4.9 Various battery-powered designs for Taiwan scooter 185
4.10 Fuel cell design parameters at maximum power 190
4.11 Flow rate parameters at maximum power 191
4.12 Stack temperature model parameters 200
4.13 System performance under TMDC and at cruising speed 208
4.14 Subcomponent summary 208
4.15 Size of various storage designs 209
4.16 Hybrid 1.1 kW scooter inadequacies 219
4.17 Hybrid fuel cell stack designs 221
4.18 Peaking power battery characteristics 221
4.19 Hybrid performance at 30 km/h 223
4.20 Hybrid performance under TMDC 223
4.21 Hybrid system design 229
4.22 Component breakdown for 3.2 kW scooter 230
4.23 Component breakdown for 1.1 kW scooter 232
4.24 Hybrid battery configuration for Taiwan scooter model 233
4.25 Hybrid power system summary 235
4.26 Performance metrics 236
4.27 Near term 1 kW fuel cell hybrid designs 238

Chapter 5
5.1 Internal combustion engine scooter parts 244
5.2 Battery-powered electric scooter parts 245
5.3 Metal hydride storage costs 245
5.4 Long-term scooter cost to manufacture 247
5.5 Summary of cost estimates
5.6 Short term bridging to the future
5.7 Taiwan vs. USA energy prices, 1997 USD
5.8 Fuel costs of Taiwan in $/GJ LHV
5.9 Comparison of assumptions for zinc-air electrowinning costs
5.10 Fuel cost summary
5.11 Fuel cell scooter performance requirements
5.12 System design results
5.13 Long-term cost of hybrid fuel cell scooters
5.14 Fuel cost summary

list of figures

Chapter 1
1.1 A scooter
1.2 Taiwan vehicle mix 1991-1998
1.3 Scooter distribution in Taiwan 1991-1998
1.4 Four-stroke cycle
1.5 Two-stroke cycle
1.6 Carbon monoxide emissions by source
1.7 Hydrocarbon emissions by source
1.8 PSI in Taiwan, 1994-1996

Chapter 2
2.1 Axial-gap pancake motor
2.2 Typical torque vs. rpm curve for DC motor
<table>
<thead>
<tr>
<th>Chapter 3</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Fuel cell schematic</td>
<td>87</td>
</tr>
<tr>
<td>3.2 Tafel plot</td>
<td>92</td>
</tr>
<tr>
<td>3.3 Effects of pressurization on polarization curves</td>
<td>94</td>
</tr>
<tr>
<td>3.4 Nafion chemical structure</td>
<td>98</td>
</tr>
<tr>
<td>3.5 Stack diagram</td>
<td>100</td>
</tr>
<tr>
<td>3.6 Active cell</td>
<td>109</td>
</tr>
<tr>
<td>3.7 Ignition energy of hydrogen</td>
<td>132</td>
</tr>
<tr>
<td>3.8 Metal hydride adsorption curve</td>
<td>136</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 4</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Free body diagram of scooter</td>
<td>161</td>
</tr>
<tr>
<td>4.2 Cruising power required at various speeds</td>
<td>166</td>
</tr>
<tr>
<td>4.3 Power required to climb various slopes at 15 km/h</td>
<td>166</td>
</tr>
<tr>
<td>4.4 Power required for various accelerations from 30 km/h</td>
<td>167</td>
</tr>
<tr>
<td>4.5 Validation of physical model</td>
<td>169</td>
</tr>
<tr>
<td>4.6 mFTP: modified Federal Test Procedure</td>
<td>171</td>
</tr>
<tr>
<td>4.7 ECE-40</td>
<td>172</td>
</tr>
<tr>
<td>4.8 Taipei Motorcycle Driving Cycle (TMDC)</td>
<td>173</td>
</tr>
<tr>
<td>4.9 Smoothed TMDC</td>
<td>180</td>
</tr>
<tr>
<td>4.10 Torque vs. rpm during TMDC</td>
<td>182</td>
</tr>
<tr>
<td>4.11 Power required in TMDC</td>
<td>183</td>
</tr>
<tr>
<td>4.12 Polarization curve</td>
<td>187</td>
</tr>
<tr>
<td>4.13 Metal hydride cooling vs. power</td>
<td>195</td>
</tr>
<tr>
<td>4.14 Heat generation as a function of time in TMDC</td>
<td>198</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>4.15</td>
<td>Stack temperature as a function of time in TMDC</td>
</tr>
<tr>
<td>4.16</td>
<td>Parasitics as a function of power</td>
</tr>
<tr>
<td>4.17</td>
<td>Parasitics as a percentage of power</td>
</tr>
<tr>
<td>4.18</td>
<td>Effect of parasitics on efficiency</td>
</tr>
<tr>
<td>4.19</td>
<td>Weights of subsystems</td>
</tr>
<tr>
<td>4.20</td>
<td>Volumes of subsystems</td>
</tr>
<tr>
<td>4.21</td>
<td>Atmospheric power versus 3 atm power</td>
</tr>
<tr>
<td>4.22</td>
<td>Division of power between fuel cell and battery during TMDC, 3.2 kW stack</td>
</tr>
<tr>
<td>4.23</td>
<td>State of charge of battery over TMDC, 3.2 kW stack</td>
</tr>
<tr>
<td>4.24</td>
<td>Division of power between fuel cell and battery during TMDC, 1.1 kW stack</td>
</tr>
<tr>
<td>4.25</td>
<td>State of charge of battery over TMDC, 1.1 kW stack</td>
</tr>
</tbody>
</table>